Extensions of vector quantization for incremental clustering

نویسنده

  • Edwin Lughofer
چکیده

In this paper, we extend the conventional vector quantization by incorporating a vigilance parameter, which steers the tradeoff between plasticity and stability during incremental online learning. This is motivated in the adaptive resonance theory (ART) network approach and is exploited in our paper for forming a one-pass incremental and evolving variant of vector quantization. This variant can be applied for online clustering, classification and approximation tasks with an unknown number of clusters. Additionally, two novel extensions are described: one concerns the incorporation of the sphere of influence of clusters in the vector quantization learning process by selecting the ‘winning cluster’ based on the distances of a data point to the surface of all clusters. Another one introduces a deletion of cluster satellites and an online splitand-merge strategy: clusters are dynamically split and merged after each incremental learning step. Both strategies prevent the algorithm to generate a wrong cluster partition due to a bad a priori setting of the most essential parameter(s). The extensions will be applied to clustering of twoand high-dimensional data, within an image classification framework and for model-based fault detection based on data-driven evolving fuzzy models. 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Clustering Approach Using Data Fusion Theory and its Application To Automatic Isolated Word Recognition

 In this paper, utilization of clustering algorithms for data fusion in decision level is proposed. The results of automatic isolated word recognition, which are derived from speech spectrograph and Linear Predictive Coding (LPC) analysis, are combined with each other by using fuzzy clustering algorithms, especially fuzzy k-means and fuzzy vector quantization. Experimental results show that the...

متن کامل

NGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map

Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...

متن کامل

On two extensions of the vector quantization scheme

Abstract: In this paper, we present results pertaining to two different extensions of vector quantization and the related question of k−means clustering. The first part of the paper is about the theoretical performance of quantization and clustering with Bregman divergences. The second one is dedicated to model selection issues for principal curves. Some numerical illustrations are provided in ...

متن کامل

Fuzzy K-Means Incremental Clustering Based on K-Center and Vector Quantization

Fuzzy k-means and vector quantization are combined in this paper to complement each other in incremental mode because each has qualities which the other lacks. The threshold of vector quantization is given and the pattern of computing the distance between the new coming data point and the k centers is introduced in a new way. We firstly reduce redundant attributes and eliminate the difference o...

متن کامل

Self-learning vector quantization for pattern discovery from speech

A novel and computationally straightforward clustering algorithm was developed for vector quantization (VQ) of speech signals for a task of unsupervised pattern discovery (PD) from speech. The algorithm works in purely incremental mode, is computationally extremely feasible, and achieves comparable classification quality with the well-known k-means algorithm in the PD task. In addition to prese...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2008